Skip to main content
padlock icon - secure page this page is secure

The use of Digital Twin for predictive maintenance in manufacturing

Buy Article:

$61.00 + tax (Refund Policy)

This paper presents a methodology to calculate the Remaining Useful Life (RUL) of machinery equipment by utilising physics-based simulation models and Digital Twin concept, in order to enable predictive maintenance for manufacturing resources using Prognostics and health management (PHM) techniques. The resources and the properties of them are first modelled in a digital environment able to simulate the real machine’s behaviour. Data are gathered by machines’ controllers and external sensors to be used for the synchronous tuning of the digital models and their simulation. The outcome of the simulation is then used to assess the resource’s condition and to calculate RUL. In this way, the condition and the status of the machines can be monitored and predicted as a result from the simulation of physics-based models, without invasive techniques of common predictive maintenance solutions. A case study is presented in this paper where the proposed methodology is validated by predicting the RUL of an industrial robot.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Manufacturing; RUL prediction; physics-based model; predictive maintenance; simulation

Document Type: Research Article

Affiliations: Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece

Publication date: November 2, 2019

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more