Skip to main content
padlock icon - secure page this page is secure

An approach for service composition optimisation considering service correlation via a parallel max–min ant system based on the case library

Buy Article:

$61.00 + tax (Refund Policy)

With the rapid development of cloud manufacturing, service composition optimisation (SCO) has become an important topic recently. Since the quality of service (QoS) varies widely in different service compositions due to the problem of service correlation, many SCO-based optimisation algorithms have been recently proposed to obtain a better service composition with an optimal QoS by combining it with the correlation-aware model. However, most existing approaches either consider the service correlation problem inadequately or suffer from a low efficiency of the optimisation algorithm. To address this problem, a novel optimisation algorithm named the parallel max–min ant system based on the case library (PMMAS-CL) is proposed, in which a comprehensive QoS correlation model is introduced with full consideration of the service correlation. In the PMMAS-CL algorithm, another special ant is employed to maintain the diversity of the population, and then a local learning strategy is adopted simultaneously to accelerate the convergence rate. Moreover, the case library, enhanced with an autonomous learning mechanism, is also applied to further improve the searching efficiency for the SCO problem. The experimental results show that the model significantly outperforms the previous approaches, and the PMMAS-CL algorithm can find the global optimal solution effectively compared with other state-of-the-art approaches.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: QoS correlation model; case library; cloud manufacturing (CMfg); parallel max–min ant system; service composition optimisation (SCO)

Document Type: Research Article

Affiliations: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing, China

Publication date: December 2, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more