Skip to main content
padlock icon - secure page this page is secure

Integration of data mining and multi-objective optimisation for decision support in production systems development

Buy Article:

$61.00 + tax (Refund Policy)

Multi-objective optimisation (MOO) is a powerful approach for generating a set of optimal trade-off (Pareto) design alternatives that the decision-maker can evaluate and then choose the most-suitable configuration, based on some high-level strategic information. Nevertheless, in practice, choosing among a large number of solutions on the Pareto front is often a daunting task, if proper analysis and visualisation techniques are not applied. Recent research advancements have shown the advantages of using data mining techniques to automate the post-optimality analysis of Pareto-optimal solutions for engineering design problems. Nonetheless, it is argued that the existing approaches are inadequate for generating high-quality results, when the set of the Pareto solutions is relatively small and the solutions close to the Pareto front have almost the same attributes as the Pareto-optimal solutions, of which both are commonly found in many real-world system problems. The aim of this paper is therefore to propose a distance-based data mining approach for the solution sets generated from simulation-based optimisation, in order to address these issues. Such an integrated data mining and MOO procedure is illustrated with the results of an industrial cost optimisation case study. Particular emphasis is paid to showing how the proposed procedure can be used to assist decision-makers in analysing and visualising the attributes of the design alternatives in different regions of the objective space, so that informed decisions can be made in production systems development.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: data mining; decision trees; multi-objective optimisation; post-optimality analysis; production systems development

Document Type: Research Article

Affiliations: 1: Virtual Systems Research Centre, University of Skövde, Skövde, Sweden 2: Department of Computer and Systems Sciences, Stockholm University, Stockholm, Sweden

Publication date: September 2, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more