Skip to main content
padlock icon - secure page this page is secure

A game-theoretic approach to generating optimal process plans of multiple jobs in networked manufacturing

Buy Article:

$61.00 + tax (Refund Policy)

This study seeks to address an approach for generating optimal process plans for multiple jobs in networked manufacturing. Because of production flexibility, generating several feasible process plans for each job is possible. Concerning the networked manufacturing mode, the specific scenario of competitive relationships, like delivery time existing between different jobs, should be taken into account in generating the optimal process plan for each job. As such, in this study, an N-person non-cooperative game-theoretic mathematical solution with complete information is proposed to generate the optimal process plans for multiple jobs. The game is divided into two kinds of sub-games, i.e. process plan decision sub-game and job scheduling sub-game. The former sub-game provides the latter ones with players while the latter ones decide payoff values for the former one to collaboratively arrive at the Nash equilibrium (NE). Endeavouring to solve this game more efficiently and effectively, a two-level nested solution algorithm using a hybrid adaptive genetic algorithm (HAGA) is developed. Finally, numerical examples are carried out to investigate the feasibility of the approach proposed in the study.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: game theory; hybrid adaptive genetic algorithm; job scheduling; networked manufacturing; process plan

Document Type: Research Article

Affiliations: 1: State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China 2: School of Management, Xi'an Jiaotong University, Xi'an, China,The Key Lab of the Ministry of Education for Process Control & Efficiency Engineering, Xi'an Jiaotong University, Xi'an, China 3: Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, China

Publication date: December 1, 2010

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more