Skip to main content
padlock icon - secure page this page is secure

Viscosity solutions for second order integro-differential equations without monotonicity condition: the probabilistic approach

Buy Article:

$55.00 + tax (Refund Policy)

In this paper, we establish a new existence and uniqueness result of a continuous viscosity solution for integro-partial differential equation (IPDE in short). The novelty is that we relax the so-called monotonicity assumption on the driver which is classically assumed in the literature of viscosity solutions of equation with non-local terms. Our method strongly relies on the link between IPDEs and backward stochastic differential equations with jumps for which we already know that the solution exists and is unique for general drivers. In the second part of the paper, we deal with the IPDE with obstacle and we obtain similar results.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 60H30; Integro-differential equation; backward stochastic differential equation with jumps; non-local term; viscosity solution

Document Type: Research Article

Affiliations: LMM, Université du Maine, Le Mans, France.

Publication date: 18 May 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more