Skip to main content
padlock icon - secure page this page is secure

A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas)

Buy Article:

$61.00 + tax (Refund Policy)

REACH regulation demands information about acute toxicity of chemicals towards fish and supports the use of QSAR models, provided compliance with OECD principles. Existing models present some drawbacks that may limit their regulatory application. In this study, a dataset of 908 chemicals was used to develop a QSAR model to predict the LC50 96 hours for the fathead minnow. Genetic algorithms combined with k nearest neighbour method were applied on the training set (726 chemicals) and resulted in a model based on six molecular descriptors. An automated assessment of the applicability domain (AD) was carried out by comparing the average distance of each molecule from the nearest neighbours with a fixed threshold. The model had good and balanced performance in internal and external validation (182 test molecules), at the expense of a percentage of molecules outside the AD. Principal Component Analysis showed apparent correlations between model descriptors and toxicity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: QSAR; REACH; aquatic toxicity; fathead minnow; kNN; similarity

Document Type: Research Article

Affiliations: Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy

Publication date: March 4, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more