Skip to main content
padlock icon - secure page this page is secure

Solid phase extraction and uptake properties of multi-walled carbon nanotubes of different dimensions towards some nitro-phenols and chloro-phenols from water

Buy Article:

$61.00 + tax (Refund Policy)

Equilibrium sorption studies and solid phase extraction (SPE) of various phenols (Phenol (Ph), 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP)) on oxidized and raw multi-walled carbon nanotubes (MWCNTs) of various external diameters (10–20, 10–30, 20–40, 40–60 and 60–100 nm) and various lengths (short: 1–2 µm and long: 5–15 µm) were tested. Equilibrium sorption studies showed that 2-NP fits the Langmuir isotherm model (LIM), while the other phenolic compounds fit the Freundlich isotherm model (FIM). There was generally an inverse relation between external diameter of MWCNT and its sorption capacity towards phenolic compounds. Long MWCNT showed higher sorption capacity than short MWCNT. Thus dimensions of MWCNT play a role in retaining the sorbed molecules. Oxidation of MWCNT caused a decrease in sorption capacity of phenolic compounds of lower acidity where hydrophobic interaction is predominant, while it caused an increase in sorption capacity of phenolic compounds of higher acidity where H-bonding is predominant. The dependence of sorption on the acidity of phenols (pKa values) indicates that the basic groups (pyrone-like groups) on the MWCNT surface play a role in the sorption process. In SPE experiments, it was found that hydrogen peroxide-oxidized MWCNT of external diameter 40–60 nm and length 5–15 µm was the best extractant at pH 6.5 using acetonitrile as eluting solvent. The optimized SPE procedure gave detection limits range: 0.027–0.202 ng mL−1 within the studied concentration range (10–100 ng mL−1). Application of the optimum SPE method on spiked tap water, reservoir water and stream water gave recovery range of 84.3–100% for 2-CP, 3-CP and 4-CP (%RSD range 2.8–9.2%); while Ph, 2-NP, 4-NP, and 2,4-DNP gave recoveries <67.6%.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: adsorption models; multi-walled carbon nanotubes; oxidized carbon nanotubes; phenols; preconcentration; solid phase extraction; water samples

Document Type: Research Article

Affiliations: Department of Chemistry, Faculty of Science,Hashemite University, P.O. Box 150459Zarqa, 13115, Jordan

Publication date: February 15, 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more