Skip to main content
padlock icon - secure page this page is secure

A submersible immunosensor

Buy Article:

$61.00 + tax (Refund Policy)

A prototype submersible immunosensor with autonomous sampling characteristics has been designed and fabricated in conjunction with Sapidyne Instruments Inc. The watertight instrument is battery-powered and internally controlled; the internal controller can interface with an external computer for modification of the experimental parameters and review of results. An environmental sample is collected from the external space via a motor driven syringe such that displacement of the motor arm corresponds to a specific intake volume. Assay reagents, buffer and fluorescently labelled antibody, stored in bags within the sensor, are drawn into the syringe after the environmental sample and mixed. The final solution containing the environmental analyte and labelled antibody then passes over a flow/observation cell containing rigid 98-micron beads coated with the analyte of interest. The sensor continuously monitors the fluorescence across the flow cell and the difference in signal from the beginning to the end of the run can be converted to an estimate of analyte concentration. After optimisation steps that included selection of the fluorophore and bead support, the sensor could mix preloaded reagents and autonomously develop a standard curve for two different analytes: caffeine, a marker for untreated sewage, and hexavalent uranium, which contaminates the groundwater in the vicinity of uranium mining and processing sites. The coefficient of variation was near 15% for all concentrations examined. The minimum levels of detection for caffeine and hexavalent uranium in this assay system were 60 and 241 pM, respectively. Spike and recovery assays showed that the sensor was able to accurately predict the concentration of both analytes within the linear region of the calibration curve. Analysis of real environmental samples contaminated with uranium showed good agreement between the sensor and a standard analytical method, thus demonstrating the suitability and versatility of the submersible immunosensor as a field instrument.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: autonomous underwater sensor; caffeine; flow fluorimeter; immunosensor; monoclonal antibodies; uranium

Document Type: Research Article

Affiliations: 1: Department of Biochemistry, Tulane University, School of Medicine, SL-43, New Orleans, LA 70112, USA 2: Department of Biochemistry, Tulane University, School of Medicine, SL-43, New Orleans, LA 70112, USA,Tulane/Xavier Center for Bioenvironmental Research, New Orleans, LA, USA

Publication date: February 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more