Skip to main content

The use of electrothermal vaporization ICP-OES for the determination of trace elements in human hair using slurry sampling and PTFE as modifier

Buy Article:

$71.00 + tax (Refund Policy)

A procedure for the determination of trace elements in human hair has been proposed by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) with slurry sampling. Slurry was prepared by immersing human hair with conc. HNO3 and then adding a polytetrafluoroethylene (PTFE) slurry, which was used as a chemical modifier for the improvement of vaporization characteristic of analyte. The slurry was homogenized with an ultrasonic vibrator before the measurement. The vaporization behaviour of the analytes in slurry and solution and the main influence factors for the determination were studied with the addition of PTFE systematically. Detection limits for this method varied from 0.033?µg?g -1 (Cu) to 3.21?µg?g -1 (Zn) with the relative standard deviations (RSDs) of 2.8–7.1%. The proposed method was successfully applied for the determination of trace elements (Cu, Mn, Cr, Fe, Zn, Cd and Pb) in human hair with minimum chemical pretreatment and aqueous calibration. The accuracy was checked by comparing the results of this method with those using pneumatic nebulization (PN) ICP-OES after a conventional acid decomposition of the same sample. In addition, the standard reference material of human hair (GBW 07601) was analysed with good agreement between the results from the proposed method and the certified values.

Keywords: Electrothermal vaporization; Human hair; Inductively coupled plasma optical emission spectrometry; Polytetrafluoroethylene midifier; Slurry sampling; Trace elements

Document Type: Research Article

Affiliations: Key Laboratory, Wuhan Polytechnic University, Wuhan 430023, PR China

Publication date: 15 June 2005

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content