Skip to main content
padlock icon - secure page this page is secure

Discrete Sturm-Liouville Problems With Parameter in the Boundary Conditions

Buy Article:

$55.00 + tax (Refund Policy)

This paper deals with discrete second order Sturm-Liouville problems in which the parameter that is part of the Sturm-Liouville difference equation also appears linearly in the boundary conditions. An appropriate Green's formula is developed for this problem, which leads to the fact that the eigenvalues are simple, and that they are real under appropriate restrictions. A boundary value problem can be expressed by a system of equations, and finding solutions to a boundary value problem is equivalent to finding the eigenvalues and eigenvectors of the coefficient matrix of a related linear system. Thus, the behavior of eigenvalues and eigenvectors is investigated using techniques in linear algebra, and a linear-algebraic proof is given that the eigenvalues are distinct under appropriate restrictions. The operator is extended to a self-adjoint operator and an expansion theorem is proved.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Boundary value problem; Difference equation; Discrete Sturm-Liouville problem; Eigenvalue; Parameter in the boundary conditions

Document Type: Research Article

Affiliations: 1: Nebraska Informatics Center for the Life Sciences, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA 2: Department of Mathematics and Computer Science, Loyola University New Orleans, New Orleans, LA 70118, USA

Publication date: 01 January 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more