Skip to main content
padlock icon - secure page this page is secure

Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor

Buy Article:

$61.00 + tax (Refund Policy)

Trapped Vortex Combustor (TVC) is a simple and promising concept for flame stabilizations in aero-engines. In this concept, cavity trapped vortices are used to establish pilot flames for robust combustion performance. The main objective of this study is to numerically investigate the effects of guide vanes on the performance of a TVC installed in a small ramjet. Three dimensional steady and unsteady simulations are performed by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with the commercial flow solver ANSYS FLUENT v16.1. The [Inline formula] shear stress transport (SST) model is selected for the turbulence closure, and the eddy dissipation model (EDM) is used for the combustion modeling of gaseous propane (C3H8) fuel. In the current work, four cases are studied: (1) TVC without vanes, (2) TVC with a square-tip vane, (3) TVC with a sharp-tip vane, and (4) TVC with a sharp-tip vane and additional cavity fuel injection. Numerical results reveal that the introduction of guide vanes significantly changes the cavity vortex structure. Unlike the previous single cavity vortex, a counter-rotating dual-vortex structure is formed inside the cavity when the vane is implemented: one vortex is generated by the air jet guided by the vane and the other is the wake vortex downstream the vane. Because of the additional air introduced into the cavity by the guide vane, a fuel-lean mixture is obtained inside the cavity. This indicates fuel can be further injected inside to make full use of the air. Combustion results show that compared with the TVC without vanes, case 4 increases the combustion efficiency by 14% (to 99.3%) at the exit of combustor. Meanwhile, the combination of the sharp tip vane and cavity fuel injection only provides around 5% increase in aerodynamic drag and 3.9% in overall total pressure loss.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: cavity flame-holder; flame stablization; ramjet; trapped vortex combustion

Document Type: Research Article

Affiliations: 1: School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 2: Department of Mechanical Engineering, College of Engineering, University of Canterbury, Christchurch, New Zealand

Publication date: December 2, 2018

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more