Skip to main content
padlock icon - secure page this page is secure

A Study of Interaction of Clouds of Inert Particles with Detonation in Gases

Buy Article:

$60.00 + tax (Refund Policy)

Interaction of a cloud of inert particles with a detonation in gaseous mixture is simulated and studied. The structure of both two- and three-dimensional detonations are modeled using a simplified chemical model with Arrhenius kinetics. Particle clouds are characterized based on the initial solid phase volume fraction ([Inline formula]) of the particle cloud and the initial cloud length (L 0). The results show that the minimum average detonation speed decreases with increase in [Inline formula] at fixed L 0, and with an increase in L 0 at fixed [Inline formula]. The detonation propagation through inert particle clouds is observed to fall into three regimes based on [Inline formula] and L 0. In the first regime, the detonation speed is suppressed, but the reaction zone and leading shock remain coupled, and the triple points are nearly unaffected. In the second regime, the detonation is temporarily quenched but restored as the particle cloud moves away from the detonation front. In the third regime, the detonation is quenched permanently or at least does not get restored within the time available for the detonation propagation. It is also shown that the effects of inert particle clouds on the detonation front in three-dimensional studies are qualitatively similar to the results from two dimensional simulations. However, in post-detonation flow where transverse velocity components are important, simulations in three dimensions are necessary, especially to estimate particle dispersion.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Dense flow; Detonation; Inert particles; Quenching; Solid phase

Document Type: Research Article

Affiliations: School of Aerospace Engineering, Georgia Institute of Technology, Atlanta,Georgia, USA

Publication date: March 1, 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more