Skip to main content
padlock icon - secure page this page is secure

Effect of Chemical Kinetics on Concurrent-Flow Flame Spread over Solids: A Comparison Between Buoyant Flow and Forced Flow Cases

Buy Article:

$60.00 + tax (Refund Policy)

The authors employed detailed numerical models with a one-step finite-rate chemical reaction to investigate the kinetic rate effect (through the variation of the pre-exponential factor) on concurrent flame spread rates over thin solids. It is found that flames in forced flow are less sensitive to the change of kinetics than flames in buoyant flow, and narrow samples are more sensitive to the change of kinetics compared with wide samples. The rate of chemical kinetics affects the flame spread rates primarily through two mechanisms: the amount of unburnt fuel vapors escaping from the reaction zone and the variation of induced flow velocity through flame temperature change in the case of the buoyant flames. Detailed analyses of the flame structure and flow pattern are presented for the forced- and buoyant-flow cases to explain their different degrees of sensitivity to the combustion reaction rate.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Buoyant upward spread; Chemical kinetics; Concurrent forced-flow flame spread; Flame structure; Incomplete combustion

Document Type: Research Article

Affiliations: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA

Publication date: April 1, 2011

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more