Skip to main content
padlock icon - secure page this page is secure


Buy Article:

$60.00 + tax (Refund Policy)

An integrated method is evaluated for simultaneously reducing NOx, SO2, and particulate emissions from power plants. The method combines dry-sorbent injection for SO2 concentration reduction, coal injection for NOx emission reduction, in conjunction with a ceramic honeycomb filter for particulate capture. The filter is mounted in an elevated temperature region where it retains sorbent particles for prolonged periods of time and facilitates their utilization until it is regenerated (cleaned). The performance of low-cost commercial sorbents, such as calcium carbonate, CaCO3; calcium hydroxide, Ca(OH)2; calcium oxide, CaO; and sodium bicarbonate, NaHCO3, was evaluated in the laboratory. The sorbent powders were blended with three types of pulverized coal to achieve NOx reduction (bituminous, subbituminous, and lignite coal) and results were contrasted with the performance of the higher-cost porous sorbent calcium formate, Ca(COOH)2. The sorbents were injected in a simulated effluent gas containing SO2 and NO at a gas temperature of 1150°C (1423 K) upstream of the ceramic filter, which was kept either at 600°C (873 K) or at 800°C (1073 K). The molar Ca/S ratio was in the range of 0.5-5, and the fuel-to-air equivalence ratio, , was in the neighborhood of 2 for all tests. The results were compared with numerical simulations using the "pore tree" mathematical model, which has been modified to simulate the formation of a sorbent bed in the filter and to incorporate both high- and moderate-temperature kinetics. Results show that injection of calcium formate achieved 80% SO2 reduction at Ca/S ratio of 2, that is, a 40% calcium utilization. The less porous and less costly sorbents achieved ≈40% SO2 reduction at the same Ca/S ratio, that is, utilizations up to 20%. Sodium bicarbonate achieved a 50% SO2 reduction at an Na/S ratio of 2, a corresponding sodium utilization as high as 50% when injected alone. Sodium bicarbonate performed even better when mixed with the coal, achieving more than 70% SO2 reduction. Higher SO2 reduction efficiencies were achieved at higher Ca/S and Na/S ratios, but the sorbent utilization did not improve. NOx removal efficiencies of 45-55% were achieved at  ≈ 2. Particulate removal efficiencies by the filter have been measured to be in the range of 97-99%. The mathematical modeling of the sulfation reaction was reasonably successful, because the experimentally observed trends and magnitude of the results were predicted.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Northeastern University, Boston, Massachusetts, USA 2: GE Power Systems, Greenville, South Carolina, USA

Publication date: March 1, 2003

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more