Skip to main content
padlock icon - secure page this page is secure


Buy Article:

$60.00 + tax (Refund Policy)

The transient, one-dimensional, thermally thick, noncharring solid material version of a numerical thermal degradation model is used to analyze the thermal degradation process of poly(methyl methacrylate) when subjected to a radiation source from a graphite plate. A theory is developed to account for oxygen-sensitive thermal degradation, which is based on differences in polymer degradation behavior in inert and non-inert environments. The model includes condensed phase heat transfer, in-depth thermal and oxidative decomposition, advective mass transfer, and in-depth absorption of radiation. It is found that an increase in gas-phase oxygen concentration decreases the surface temperature and increases the gasification rate substantially. The predictions yield physically realistic results when compared with published experimental data for an external radiation source with flux of 17 kW·m−2.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Mechanical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Iran

Publication date: October 1, 2002

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more