Skip to main content
padlock icon - secure page this page is secure

Synthesis, characterization, and electrochemical studies of Co(II, III) dithiocarbamate complexes

Buy Article:

$60.00 + tax (Refund Policy)

Cobalt(II) complexes of N-methyl phenyl, 1-phenylpiperazyl, and morpholinyl dithiocarbamates have been synthesized and characterized by UV–Visible, FTIR, 1H-, 13C-NMR, and mass spectrometry. The spectroscopic data indicated that two ligands coordinated in bidentate chelating to the metal ion to form four-coordinate cobalt(II) complexes (13), which was confirmed by mass analysis (TOF MS ES+) of the complexes with m/z [M]+ = 450.98, 382.94, and 382.94 for 1, 2, and 3, respectively. Single crystal analysis of 2A and 3A show centrosymmetric mononuclear cobalt(III) bonded to three dithiocarbamate ligands forming a distorted octahedral geometry, indicating the cobalt(II) undergoes aerial oxidation to cobalt(III) during recrystallization. In addition, 2A crystallized with one solvated molecule of toluene. The redox behaviors of the complexes were studied by cyclic and square wave voltammetry in dichloromethane; the result revealed a metal centered redox process consisting of a one-electron quasi-reversible process assigned to Co(III)/Co(IV) oxidation and a corresponding Co(IV)/Co(III) reduction. Randles–Sevcik plots (anodic peak current versus the square root of the scan rate (Ip,a versus ν1/2)) for the redox couples revealed diffusion-controlled behavior.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Synthesis; cobalt(II); crystal structure; cyclic voltammetry; dithiocarbamates

Document Type: Research Article

Affiliations: School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa

Publication date: April 3, 2019

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more