Skip to main content
padlock icon - secure page this page is secure

Proton-coupled electron transfer from photo-excited CdS nanoparticles

Buy Article:

$60.00 + tax (Refund Policy)

Polyoxometalate (POM) cluster anions form monolayers on metal(0) nanoparticles (NPs) in water, serve as protecting ligands for binary-salt nanocrystals (such as AgCl), and as covalently attached ligands on anatase TiO2 nanocrystals. We now show that the lacunary-Keggin ion [α-AlW11O39]9− (1) binds strongly to Cd2+ in water, providing control over the growth and stability of CdS nanoparticles (NPs) that form upon addition of sulfide. When reduced by a single electron, the already highly negatively charged POM, 1 is protonated by water, and 1-protected CdS NPs were used as visible-light driven electron donors to assess whether combined reduction and protonation of 1 occurred via sequential electron- and proton-transfer steps (an ETPT mechanism), or simultaneously, via concerted proton-electron transfer (CPET). Comparison of the kinetic profiles for reduction of 1 in D2O and in H2O showed the absence of a kinetic isotopic effect (KIE), characteristic of ETPT mechanisms.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CdS; Polyoxometalate; electron transfer

Document Type: Research Article

Affiliations: Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel

Publication date: July 3, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more