Skip to main content
padlock icon - secure page this page is secure

Nanotubes from misfit layered compounds

Buy Article:

$60.00 + tax (Refund Policy)

First, the mechanisms leading to the formation of nanotubes from layered (2-D) materials are briefly discussed. Two main mechanisms are evoked: (1) The asymmetry of the layer along the c-axis, which leads to spontaneous folding, as revealed first by Pauling in 1930; (2) The seaming of the layer due to the abundance of dangling bonds in the rim atoms of the 2-D nanoclusters. This mechanism was discussed first in connection with carbon fullerenes and carbon nanotubes, some 30 years ago and was further extended to inorganic 2-D materials in 1992. In the second part of this work, the formation mechanism of nanotubes from misfit layered compounds (MLC) is deliberated. Here, the two forces are shown to work in synergy leading to facile formation of nanotubes from ternary misfit compounds. This synergy is demonstrated through the versatile chemistry, which has been employed to synthesize MLC nanotubes. Furthering in complexity, few recent examples of nanotubes from quaternary chalcogenide-based MLC are briefly discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 2-D materials; Inorganic nanotubes; misfit layered compounds; nanomaterials

Document Type: Research Article

Affiliations: Department of Materials and Interfaces, Weizmann Institute, Rehovot, Israel

Publication date: July 3, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more