Skip to main content
padlock icon - secure page this page is secure

Mononuclear, homo- and hetero-binuclear complexes of 1-(5-(1-(2-aminophenylimino)ethyl)-2,4-dihydroxyphenyl)ethanone: synthesis, magnetic, spectral, antimicrobial, antioxidant, and antitumor studies

Buy Article:

$61.00 + tax (Refund Policy)

A new Schiff base, H2L, was prepared by condensation of 4,6-diacetylresorcinol with o-phenylenediamine in molar ratio 1 : 1. The ligand reacted with copper(II), nickel(II), cobalt(II), iron(III), zinc(II), oxovanadium(IV), and dioxouranium(VI) ions in the absence and presence of LiOH to yield mononuclear and homobinuclear complexes. The mononuclear dioxouranium(VI) complex [(HL)-(UO2)(OAc)(H2O)]ยท5H2O was used to synthesize heterobinuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H-, and 13C-NMR, electronic, ESR and mass spectra, conductivity, and magnetic susceptibility measurements as well as thermal analysis. In the absence of LiOH, mononuclear complexes (1, 4, and 9) were obtained; in the presence of LiOH, binuclear complexes (3, 5, 7, and 10) as well as mononuclear complexes (2, 6, and 8) were obtained. In the mononuclear complexes, the coordinating sites are the phenolic oxygen, azomethine nitrogen, and amino nitrogen. In addition to these coordinating sites, the free carbonyl and phenolic OH are involved in coordination in binuclear complexes. The metal complexes exhibited octahedral, tetrahedral, and square planar geometries while the uranium is seven-coordinate. The antimicrobial and antioxidant activities of the ligand and its complexes were investigated. The ligand and the metal complexes showed antitumor activity against Ehrlich Acites Carcinoma.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 13C-NMR spectra; 4,6-diacetylresorcinol; ESR spectra; Schiff base ligand; antimicrobial; antioxidant and antitumor activities; mono- and binuclear complexes

Document Type: Research Article

Affiliations: Faculty of Education, Department of Chemistry, Ain Shams University, Cairo, Egypt

Publication date: January 17, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more