Skip to main content
padlock icon - secure page this page is secure

Accurate prediction of 195Pt-NMR chemical shifts for hydrolysis products of [PtCl6]2− in acidic and alkaline aqueous solutions by non-relativistic DFT computational protocols

Buy Article:

$61.00 + tax (Refund Policy)

The 195Pt-NMR chemical shifts of all possible hydrolysis products of [PtCl6]2− in acidic and alkaline aqueous solutions are calculated employing simple non-relativistic density functional theory computational protocols. Particularly, the GIAO-PBE0/SARC-ZORA(Pt) ∪ 6-31 + G(d)(E) computational protocol augmented with the universal continuum solvation model (SMD) performs the best for calculation of the 195Pt-NMR chemical shifts of the Pt(IV) complexes existing in acidic and alkaline aqueous solutions of [PtCl6]2−. Excellent linear plots of δ calcd(195Pt) chemical shifts versus δ exptl(195Pt) chemical shifts and δ calcd(195Pt) versus the natural atomic charge Q Pt are obtained. Very small changes in the Pt–Cl and Pt–O bond distances of the octahedral [PtCl6]2−, [Pt(OH)6]2−, and [Pt(OH2)6]4+ complexes have significant influence on the computed σ iso 195Pt magnetic shielding tensor elements of the anionic [PtCl6]2− and the computed δ 195Pt chemical shifts of [Pt(OH)6]2− and [Pt(OH2)6]4+. An increase of the Pt–Cl and Pt–O bond distances by 0.001 Å (1 mÅ) is accompanied by a downfield shift increment of 17.0, 19.4, and 37.6 ppm mÅ−1, respectively. Counter-anion effects in the case of the highly positive charged complexes drastically improve the accuracy of the calculated 195Pt chemical shifts providing values very close to the experimental ones.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 195Pt-NMR; DFT calculations; Hydrolysis products of [PtCl6]2− in aqueous solutions; Prediction of 195Pt chemical shifts

Document Type: Research Article

Affiliations: Laboratory of Inorganic and General Chemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece

Publication date: November 2, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more