Skip to main content
padlock icon - secure page this page is secure

Supply requirement prediction during long duration space missions using Bayesian estimation

Buy Article:

$61.00 + tax (Refund Policy)

This paper examines the probabilistic relationship between resource consumption and crew workload in an analogue Mars Base scenario. We use data from the 2004 season of the Flashline Mars Arctic Research Station (FMARS) to define a probabilistic relationship between food consumption, planned workload, and actual work conducted by the crew. Bayesian estimation is then used as a mathematical method of learning this relationship. The learned model can be used as a basis for future logistics planning for a crew in a given environment - food supplies and work conducted would be tracked daily, allowing base mission operations to predict and adjust critical re-supply dates from learned data and a planned workload. We show results from field exercises, which demonstrate considerably greater prediction accuracy than current methods, and which are directly applicable to long-duration space missions, regardless of individual crew makeup and personal needs.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Aerospace; Bayesian networks; Consumption; Logistics; Modelling; Supply prediction

Document Type: Research Article

Affiliations: 1: ARC Centre of Excellence in Autonomous Systems, The University of Sydney, NSW, Australia 2: The Mars Society International, WA, USA 3: The Mars Society International, Santa Rosa, CA, USA

Publication date: December 1, 2007

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more