Skip to main content
padlock icon - secure page this page is secure

Conditional conceptual predictive statistic for mixed model selection

Buy Article:

$61.00 + tax (Refund Policy)

In linear mixed models, making use of the prediction of the random effects, we propose the conditional Conceptual Predictive Statistic for mixed model selection based on a conditional Gauss discrepancy. We define the conditional Gauss discrepancy for measuring the distance between the true model and the candidate model under the conditional mean of response variables. When the variance components are known, the conditional serves as an unbiased estimator for the expected transformed conditional Gauss discrepancy; when the variance components are unknown, the conditional serves as an asymptotically unbiased estimator for the expected transformed conditional Gauss discrepancy. The best linear unbiased predictor (BLUP) is employed for the estimation of the random effects. The simulation results demonstrate that when the true model includes significant fixed effects, the conditional criteria perform effectively in selecting the most appropriate model. The penalty term in the computed by the estimated effective degrees of freedom yields a very good approximation to the penalty term between the target discrepancy and the goodness-of-fit term.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: conditional; conditional Gauss discrepancy; effective degrees of freedom of parameters; linear mixed model; mixed model selection

Document Type: Research Article

Affiliations: 1: Process Modeling Analytics Department, Bristol-Myers Squibb, New York, NY, USA 2: Department of Mathematics and Statistics, Bowling Green State University, 450 Math Science Building, Bowling Green, OH, 43403, USA

Publication date: March 11, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more