Skip to main content
padlock icon - secure page this page is secure

A joint modeling approach for spatial earthquake risk variations

Buy Article:

$61.00 + tax (Refund Policy)

Modeling spatial patterns and processes to assess the spatial variations of data over a study region is an important issue in many fields. In this paper, we focus on investigating the spatial variations of earthquake risks after a main shock. Although earthquake risks have been extensively studied in the literatures, to our knowledge, there does not exist a suitable spatial model for assessing the problem. Therefore, we propose a joint modeling approach based on spatial hierarchical Bayesian models and spatial conditional autoregressive models to describe the spatial variations in earthquake risks over the study region during two periods. A family of stochastic algorithms based on a Markov chain Monte Carlo technique is then performed for posterior computations. The probabilistic issue for the changes of earthquake risks after a main shock is also discussed. Finally, the proposed method is applied to the earthquake records for Taiwan before and after the Chi-Chi earthquake.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Markov chain Monte Carlo; Metropolis–Hastings algorithm; conditional autoregressive model; hierarchical Bayesian model

Document Type: Research Article

Affiliations: Institute of Statistics and Information Science,National Changhua University of Education, Changhua, Taiwan, Republic of China

Publication date: August 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more