Skip to main content
padlock icon - secure page this page is secure

Bayesian parametric accelerated failure time spatial model and its application to prostate cancer

Buy Article:

$61.00 + tax (Refund Policy)

Prostate cancer (PrCA) is the most common cancer diagnosed in American men and the second leading cause of death from malignancies. There are large geographical variation and racial disparities existing in the survival rate of PrCA. Much work on the spatial survival model is based on the proportional hazards (PH) model, but few focused on the accelerated failure time (AFT) model. In this paper, we investigate the PrCA data of Louisiana from the Surveillance, Epidemiology, and End Results program and the violation of the PH assumption suggests that the spatial survival model based on the AFT model is more appropriate for this data set. To account for the possible extra-variation, we consider spatially referenced independent or dependent spatial structures. The deviance information criterion is used to select a best-fitting model within the Bayesian frame work. The results from our study indicate that age, race, stage, and geographical distribution are significant in evaluating PrCA survival.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Bayesian; accelerated failure time model; deviance information criterion; likelihood; spatial

Document Type: Research Article

Affiliations: 1: Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA 2: Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA

Publication date: March 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more