Skip to main content
padlock icon - secure page this page is secure

Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K–Ar ages and zircon fission track and U–Pb isotope dating

Buy Article:

$61.00 + tax (Refund Policy)

Barrington shield volcano was active for 55 million years, based on basalt K–Ar and zircon fission track dating. Activity in the northeast, at 59 Ma, preceded more substantial activity between 55 and 51 Ma and more limited activity on western and southern flanks after 45 Ma. Eruptions brought up megacrystic gemstones (ruby, sapphire and zircon) throughout the volcanism, particularly during quieter eruptive periods. Zircon fission track dating (thermal reset ages) indicates gem‐bearing eruptions at 57, 43, 38, 28 and 4–5 Ma, while U–Pb isotope SHRIMP dating suggests two main periods of zircon crystallisation between 60 and 50 Ma and 46–45 Ma. Zircons show growth and sector twinning typical of magmatic crystallisation and include low‐U, moderate‐U and high‐U types. The 46 Ma high‐U zircons exhibit trace and rare‐earth element patterns that approach those of zircon inclusions in sapphires and may mark a sapphire formation time at Barrington. Two Barrington basaltic episodes include primary lavas with trace‐element signatures suggesting amphibole/apatite‐enriched lithospheric mantle sources. Other basalts less‐enriched in Th, Sr, P and light rare‐earth elements have trace‐element ratios that overlap those of HIMU‐related South Tasman basalts. Zircon and sapphire formation is attributed to crystallisation from minor felsic melts derived by incipient melting of amphibole‐enriched mantle during lesser thermal activity. Ruby from Barrington volcano is a metamorphic type, and a metamorphic/metasomatic origin associated with basement ultramafic bodies is favoured. Migratory plate/plume paths constructed through Barrington basaltic episodes intersect approximately 80% of dated Palaeogene basaltic activity (65–30 Ma) along the Tasman margin (27–37°S) supporting a migratory plume‐linked origin. Neogene Barrington activity dwindled to sporadic gem‐bearing eruptions, the last possibly marking a minor plume trace. The present subdued thermal profile in northeastern New South Wales mantle suggests future Barrington activity will be minimal.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Cenozoic; basalt; fission track dating; potassium‐argon dating; ruby; sapphire; uranium‐lead dating; zircon

Document Type: Research Article

Affiliations: 1: Mineralogy/Petrology Section, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia 2: Research School of Earth Sciences, Australian National University, ACT 0200, Australia

Publication date: April 1, 2001

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more