Skip to main content

Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H22 murine hepatocarcinoma model

Buy Article:

$42.00 + tax (Refund Policy)

Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, has recently been shown to affect the development of different types of cancer. The present study utilized a murine H22 hepatocarcinoma model to investigate the molecular mechanisms involved in celecoxib-induced inhibition of tumor angiogenesis. Tumor-bearing mice were randomly divided into five groups: i) control; ii) low-dose celecoxib (50 mg/kg); iii) high-dose celecoxib (200 mg/kg); iv) 5-fluorouracil (5-FU), (20 mg/kg) and v) combination of 5-FU and celecoxib (50 mg/kg). The antitumor effect of celecoxib was determined by measuring tumor volume. Tumor angiogenesis was evaluated by microvessel density (MVD). Tumor histology and immunostaining for CD34 in endothelial cells were performed to detect MVD. The expression levels of phosphatase and tensin homologue deleted from chromosome 10 (PTEN), phosphatidylinositol 3-kinase (PI3K), phosphoAkt (P-Akt), COX-2, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) were detected by ELISA, immunohistochemistry and western blotting, respectively. We discovered substantial growth delay in murine H22 hepatoma as a result of celecoxib treatment. The inhibition rate of tumor growth induced by high-dose and low-dose celecoxib was 49.3 and 37.0%, respectively (P<0.05). The expression of PI3K, P-Akt, COX-2, HIF-1α, VEGF-A and PTEN in tumor tissues treated with celecoxib was demonstrated by immunohistochemistry, and the MVD was decreased in a dose-dependent manner (P<0.05). Reduced PI3K and P-Akt was particularly apparent in the high-dose celecoxib group (P<0.05). ELISA and western blotting data showed that the expression of PI3K, P-Akt, COX-2, HIF-1α and VEGF-A were reduced and PTEN was increased after treatment with celecoxib. In conclusion, the impact of celecoxib-induced tumor growth delay of murine H22 hepatocarcinoma may correlate with the inhibition of angiogenesis by reducing PI3K, P-Akt, COX-2, HIF-1α and VEGF-A expression and increasing PTEN expression in tumor tissue.

Document Type: Research Article

Affiliations: 1: Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China 2: Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada

Publication date: 01 January 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content