Skip to main content
padlock icon - secure page this page is secure

A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo

Buy Article:

$42.00 + tax (Refund Policy)

microRNA (miRNA) sponges are RNA molecules with repeated miRNA binding sequences that can sequester miRNAs from their endogenous target mRNAs, and a stably expressed miRNA sponge is particularly valuable for long-term loss-of-function studies in vitro and in vivo. Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and is characterized by extraordinarily angiogenic, invasive and migratory capabilities, hallmark features that make the disease incurable. Nonetheless, improvements in clinical treatment and a better understanding of the underlying molecular mechanisms have been achieved within the past few decades. miR-23b has previously been found to function as a tumor oncogene in GBM. In the present study, we employed an microRNA sponge that was forcibly expressed using a lentiviral vector to knock down the expression of miR-23b in vitro and in vivo and assessed the pleiotropic effects on glioma angiogenesis, invasion and migration. We demonstrated that the inhibition of miR-23b in glioma cell lines and orthotopic tumor mouse models resulted in a reduction in tumor malignancy, through the downregulation of HIF-1α, β-catenin, MMP2, MMP9, VEGF and ZEB1 and increased expression of VHL and E-cadherin. Therefore, we suggest that this miR-23b sponge could be developed into a promising anticancer therapy either alone or in combination with current targeted therapies.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, P.R. China

Publication date: January 1, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more