Skip to main content

Dauricine inhibits viability and induces cell cycle arrest and apoptosis via inhibiting the PI3K/Akt signaling pathway in renal cell carcinoma cells

Buy Article:

$42.00 + tax (Refund Policy)

Renal cell carcinoma (RCC), which is derived from the proximal tubules of nephrons, is one of the most common solid cancers. Due to its inherent insensitivity to radiotherapy and chemotherapy, surgery remains the only curative strategy for RCC. Therefore, a novel strategy for treating RCC is urgently needed. This study aims to investigate the effects of dauricine, a bisbenzylisoquinoline alkaloid, in RCC cells and the underlying mechanisms of its action. The effects of dauricine on viability, cell cycle distribution and apoptosis in RCC cells were determined in vitro by MTT assay, flow cytometry and nucleosome ELISA assay, respectively. Mechanism studies were performed by analyzing related proteins using western blotting assays. We show that dauricine effectively inhibits the viability of four RCC cell lines (786O, Caki1, A498 and ACHN). In addition, dauricine induces cell cycle arrest at the G0/G1 phase in RCC cells. Dauricine also induces apoptosis via the intrinsic pathway, since caspase9 and caspase3 but not caspase8 activation was detected after the treatment. Moreover, dauricine was able to inhibit the PI3K/Akt signaling pathway. Our findings suggest inhibitory effects of dauricine in renal cancer cells and provide a better understanding of its underlying mechanism. Our findings suggest that dauricine could be a potential therapeutic agent for treating RCC.

Document Type: Research Article

Affiliations: 1: Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China 2: Department of Urological Surgery, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315000, P.R. China

Publication date: 01 January 2018

More about this publication?
  • Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content