Skip to main content

Neuroprotective effects of N-acetyl cysteine on primary hippocampus neurons against hydrogen peroxide-induced injury are mediated via inhibition of mitogen-activated protein kinases signal transduction and antioxidative action

Buy Article:

$42.00 + tax (Refund Policy)

N-acetyl cysteine (NAC) has been extensively reported to exert neuroprotective effects on the central nervous system. Oxidative stress may contribute to the underlying mechanisms causing Alzheimer's disease (AD). The effect of NAC against oxidative stress injury was investigated in a cellular model of AD in the present study and the underlying mechanisms were revealed. The neuroprotective action of NAC (1, 10, 100 and 1,000 µmol/l) on a cellular model of AD [hydrogen peroxide (H2O2)induced (3, 30 and 300 µmol/l) toxicity in primary rat hippocampus neurons] demonstrated the underlying mechanisms. Cytotoxicity was measured using the MTT assay, and light microscopy and the dichloro-dihydro-fluorescein diacetate method were used to detect the reactive oxygen species (ROS) levels. Furthermore, the levels of mitogen-activated protein kinases (MAPKs) signal transduction and tau protein phosphorylation were measured via western blotting. NAC (100 µmol/l) protected hippocampus neurons against H2O2mediated toxicity, as evidenced by enhanced cell viability. Using MTT assay and light microscopy for the observation of cell death, NAC ameliorated cell viability, which was induced by H2O2 injury (P<0.05). NAC was found to mitigate the excessive production of ROS (P<0.05). Another mechanism involved in the neuroprotective action of NAC may be its ability to inhibit MAPK signal transduction following H2O2 exposure. In addition, NAC may protect cells against H2O2induced toxicity by attenuating increased tau phosphorylation. Thus, the protective ability of NAC is hypothesized to result from inhibition of oxidative stress and downregulation of MAPK signal transduction and tau phosphorylation.

Document Type: Research Article

Affiliations: 1: Department of Brain Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China 2: Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China 3: Department of Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China 4: Department of Neurology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China

Publication date: 01 January 2018

More about this publication?
  • Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content