Skip to main content
padlock icon - secure page this page is secure

Emulsified isoflurane treatment inhibits the cell cycle and respiration of human bronchial epithelial 16HBE cells in a p53-independent manner

Buy Article:

$42.00 + tax (Refund Policy)

Emulsified isoflurane (EIso), as a result of its rapid anesthetic induction, recovery and convenience, is widely used as a novel intravenous general anesthetic. Treatment with EIso can reduce injuries caused by ischemia/reperfusion (I/R) to organs, including the heart, lung and liver, without knowing understanding the molecular mechanism. The present study hypothesized that treatment with EIso can affect the physiological processes of human lung bronchial epithelial cells (16HBE) prior to I/R. To test this hypothesis, the present study first constructed stable p53 knockdown and synthesis of cytochrome c oxidase (SCO)2 knockdown 16HBE cells. The above cells were subsequently treated with EIso at a concentration of 0.1 and 0.2% for 24 h. The relevant concentration of fat emulsion was used as a negative control. The expression levels of p53, p21, SCO1, SCO2 and Tp53induced glycolysis and apoptosis regulator (TIGAR) were detected by reverse transcriptionquantitative polymerase chain reaction and western blotting. Subsequently, the cell proliferation, respiration and glycolysis were investigated. The results revealed that EIso treatment significantly decreased the transcription of TIGAR, SCO1 and SCO2, and increased the transcription of p21, which are all p53 target genes, in a p53-independent manner. The cell cycle was inhibited by arresting cells at the G0/G1 phase. Respiration was reduced, which caused a decrease in oxygen consumption and the accumulation of lactate and reactive oxygen species. Taken together, EIso treatment inhibited the proliferation and respiration, and promoted glycolysis in 16HBE cells. This regulatory pathway may represent a protective mechanism of EIso treatment by inhibiting cell growth and decreasing the oxygen consumption from I/R.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China 2: Department of Anesthesiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China

Publication date: July 1, 2016

More about this publication?
  • Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more