Skip to main content
padlock icon - secure page this page is secure

Epigallocatechin3gallate and zinc provide antiapoptotic protection against hypoxia/reoxygenation injury in H9c2 rat cardiac myoblast cells

Buy Article:

$42.00 + tax (Refund Policy)

It has previously been demonstrated that phosphatidylinositol3kinase (PI3K)/Akt and cleaved caspase3 serve critical roles in the apoptosis of cardiac myocytes following ischemia/reperfusion injury. Epigallocatechin3gallate (EGCG), the predominant catechin component of green tea, has been reported to have potential cardioprotective effects in primary cultures of cardiac myocytes exposed to I/R injury, mediated through inhibition of signal transducers and activators of transcription1 activity. In addition, it is also known that the biological behavior of EGCG may be influenced by metal ions, for example the hepatoprotective activity of EGCG has been reported to be enhanced by zinc. In the present study, the protective effects of EGCG with zinc were assessed on cultures of rat cardiac myoblasts exposed to hypoxia/reoxygenation (H/R) injury. H9c2 cells were subjected to 3h hypoxia, followed by 1h reperfusion. EGCG and/or zinc were perfused prior to induced hypoxic stress. It was demonstrated that when EGCG interacted with zinc, the antiapoptotic activity was significantly enhanced. To the best of our knowledge, the current study was the first to demonstrate that EGCG + Zn2+ protects H9c2 cells against H/R injury through activation of the PI3K/Akt pathway, as determined by western blotting. Since EGCG + Zn2+ may, at least in part, protect cardiac myocytes against H/Rinduced apoptotic cell death, the PI3K/Akt pathway of EGCG may be enhanced by its interactions with zinc during H/R injury. Furthermore, it was suggested that a similar procedure may be implemented in a clinical setting, in order to maximize PI3K/Akt activation levels in patients with acute coronary artery disease. EGCG and zinc may therefore represent effective agents for use in the prevention of I/R injury in clinical practice.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China

Publication date: August 1, 2015

More about this publication?
  • Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more