Skip to main content
padlock icon - secure page this page is secure

Effect of ascorbic acid and hydrogen peroxide on mouse neuroblastoma cells

Buy Article:

$42.00 + tax (Refund Policy)

Ascorbic acid is one of the antioxidant compounds widely used against free radical stress. The present study was undertaken to examine whether ascorbic acid and hydrogen peroxide (H2O2), alone or in combination, could influence cell viability. The murine neuroblastoma cell line, N2a, was used to perform a dose response curve for ascorbic acid. It was observed that ascorbic acid alone at physiological concentrations (0.1-0.4 mM) did not cause any cell death. However, at pharmacological concentrations (1-6 mM), ascorbic acid caused dose-dependent cell death. The lethal concentration at which 50% cells were killed (LC50) was determined to be approximately 3.141 mM ascorbic acid at 24 h. H2O2 up to 300 µM alone did not cause significant cell death. In the combined treatment, when the cells were treated with ascorbic acid at physiological concentrations (0.4 mM) and H2O2 at 400 µM, higher rates of cell death were observed compared to the cell death rates caused by either compound alone. Subsequent experiments revealed that cell death was partly mediated through the loss of total glutathione levels in the cells. These data suggest that the combination of ascorbic acid and H2O2 is disadvantageous for cancer cell survival. Further studies are required to ascertain the physiological significance of these observations.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Meharry Medical College, Nashville, TN 37208, USA 2: College of Pharmacy and Pharmaceutical Sciences, Florida A__AMB__M University, Tallahassee, FL 32307, USA

Publication date: January 1, 2012

More about this publication?
  • Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more