Skip to main content

Nitric oxide (NO) enhances pemetrexed cytotoxicity via NOcGMP signaling in lung adenocarcinoma cells in vitro and in vivo

Buy Article:

$42.00 + tax (Refund Policy)

Pemetrexed (PEM) is a novel, multitargeted, antifolate, antineoplastic agent for the treatment of non-small cell lung cancer and malignant pleural mesothelioma. Additional effects of nitric oxide (NO) donors on the chemosensitivity of cancers have been reported. However, the effects of an NO donor on PEM-induced cytotoxicity remain unknown. In this study, we investigated the effects of the NO donors, NOC-18 on the cytotoxicity in A549 cells in vitro and of nitroglycerin (GTN), on the tumor growth of Lewis lung carcinoma cells in a murine syngraft model treated with PEM. The effects of NO donors on the expression of proteins associated with PEM metabolism, including thymidylate synthase (TS), reduced folate carrier 1 (RFC1), folylpolyglutamate synthase (FPGS), γ-glutamyl hydrolase (GGH) and multidrug resistance-related protein (MRP)5, and the effects of cyclic guanosine mono­phosphate (cGMP) signaling on these proteins were examined in A549 cells. Treatment with 100 nM NOC-18 for 3 days significantly enhanced PEM-induced cytotoxicity and increased the expression of RFC1 and FPGS in A549 cells. Treatment with 10 nM 8-bromo-cGMP (8-Br-cGMP) for 3 days also increased the expression of RFC1 and FPGS in A549 cells. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µm) significantly reversed the increase in RFC1 and FPGS expression induced by 100 nM NOC-18 in A549 cells. Combination therapy with GTN and PEM significantly reduced tumor growth compared with PEM alone in the syngraft model. The enhanced antitumor effect of GTN plus PEM was significantly reversed by the concomitant addition of ODQ. These findings suggest that NO donors, such as NOC-18 and GTN, enhance the anticancer effects of PEM by increasing the RFC1 and FPGS expression and stimulating cGMP signaling pathways in cancer cells.

Document Type: Research Article

Affiliations: 1: Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan 2: Clinical Practice, Innovation of New Biomedical Engineering Center, Tohoku University, Sendai, Miyagi 980-8574, Japan 3: Department of Respiratory Medicine, Tohoku University School of Medicine, Sendai, Miyagi 980-8574, Japan 4: Department of Advanced Preventive Medicine for Infectious Diseases, Tohoku University School of Medicine, Sendai, Miyagi 980-8574, Japan

Publication date: 01 January 2012

More about this publication?
  • The International Journal of Oncology provides an international forum for the publication of the latest, cutting-edge research in the broad area of oncology and cancer treatment. The journal accepts original high quality works and reviews on all aspects of oncology research including carcinogenesis, metastasis, epidemiology, chemotherapy and viral oncology. Through fair and efficient peer review, the journal is dedicated to publishing top tier research in the field, offering authors rapid publication as well as high standards of copy-editing and production. The International Journal of Oncology is published on a monthly basis in both print and early online.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content