Skip to main content

A novel pharmacodynamic approach to assess and predict tumor response to the epidermal growth factor receptor inhibitor gefitinib in patients with esophageal cancer

Buy Article:

$42.00 + tax (Refund Policy)

This study aimed to describe a short-term ex vivo assay to predict response to epidermal growth factor receptor (EGFR) targeted therapy (gefitinib) in adenocarcinoma patients. Four patients with locally advanced esophageal adenocarcinoma were treated with gefitinib (250 mg/day) for 14 days and pharmacokinetic (PK) studies were conducted to monitor plasma drug concentrations. Tumor cells were sampled by endoscopic biopsy prior to (baseline, day 0) and at the completion of (day 14) treatment. Cells obtained at baseline were exposed to gefitinib in short-term cell culture conditions (ex vivo assay). Western blot analyses with phospho-specific antibodies were performed to evaluate activation and biochemical response to therapy of EGFR and its downstream signaling components ERK and AKT ex vivo and in vivo. The in vivo profiles were correlated with the gefitinib-mediated alteration in proliferating cell nuclear antigen (PCNA) expression, a marker of cell proliferation. The correlation between EGFR expression and ERK activity was also investigated by immunohistochemical analysis in pretreatment biopsies. Mutational status of the genes encoding EGFR, K-RAS, and PI3KCA (the phosphoinositide 3-kinase catalytic subunit p110) as well as expression levels of PTEN protein were tested in order to investigate potential confounders of the gefitinib effect. All patients completed the gefitinib therapy. PK studies demonstrated constant gefitinib concentrations during the treatment, confirming persistent exposure of target tissue to the drug at sufficient levels to achieve EGFR blockade. Ex vivo culture with gefitinib resulted in distinct response patterns representing various states of activity of the ERK and AKT pathways. The results of the ex vivo studies correctly predicted the pharmacodynamic (PD) effects of the agents in tumor tissue in vivo. PCNA expression correlated with ERK pathway inhibition, but not with gefitinib-mediated inhibition of EGFR activity alone. Immunohistochemical analysis performed on pretreatment biopsies correlated with Western blot analysis of EGFR and phospho-ERK expression. No mutations were identified in exons 18-21 of EGFR, exons 2 and 3 of K-RAS or exons 9 and 22 of PI3KCA. Levels of PTEN were comparable across tumors. The novel pharmacodynamic approach described in this proof of principle study may be useful to refine the patient selection to maximize the potential benefits of drugs and design individualized rational therapies for cancer patients.

Document Type: Research Article

Affiliations: Thoracic Oncology and Experimental Therapeutics Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA., Email: [email protected]

Publication date: 01 January 2010

More about this publication?
  • The International Journal of Oncology provides an international forum for the publication of the latest, cutting-edge research in the broad area of oncology and cancer treatment. The journal accepts original high quality works and reviews on all aspects of oncology research including carcinogenesis, metastasis, epidemiology, chemotherapy and viral oncology. Through fair and efficient peer review, the journal is dedicated to publishing top tier research in the field, offering authors rapid publication as well as high standards of copy-editing and production. The International Journal of Oncology is published on a monthly basis in both print and early online.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content