Skip to main content
padlock icon - secure page this page is secure

Combination therapy using three novel prolactin receptor antagonist-based fusion proteins effectively inhibits tumor recurrence and metastasis in HER2/neu transgenic mice

Buy Article:

$42.00 + tax (Refund Policy)

Previously, prolactin receptor antagonist (G129R)- based fusion proteins were developed including G129R fusions with an angiogenesis inhibitor (endostatin), an immune system modulator (interleukin 2), and a modified truncated cytotoxin (PE38KDEL). Each fusion protein was designed to target the PRLR-positive cells via the G129R moiety and at the same time attack a hallmark common to cancer cells via the second moiety. In this study, we tested the efficacy of the three fusion proteins as a combination therapy in an aggressive but clinically relevant mouse tumor model. To test the feasibility and to optimize a treatment regimen, allografts of a mammary carcinoma cell line (McNeuA) derived from an MMTV-neu transgenic mouse were first used. Growth of the allografts was significantly retarded by regimens which combined all three fusion proteins. In addition, a significant increase in cytotoxic CD8+ T cells was observed within the tumors of the combination treated groups. After establishing the dosing regimen, two doses of cocktail treatment (low and high doses administered twice weekly) along with individual component controls were administered to female MMTV-neu transgenic mice after surgical removal of a naturally occurring tumor. The average tumor recurrence time was significantly delayed in both low and high combination treatment groups in comparison to the no treatment control group (34, 50 and 18 days, respectively). The total number of lung metastases was also significantly decreased in both combination treatment groups. In conclusion, using G129R-based fusion proteins to target mammary carcinomas and to tackle multiple hallmarks of cancer at the same time was an effective strategy for treating HER2-postive mammary cancer in this mouse tumor model.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

Publication date: April 1, 2009

More about this publication?
  • The International Journal of Oncology provides an international forum for the publication of the latest, cutting-edge research in the broad area of oncology and cancer treatment. The journal accepts original high quality works and reviews on all aspects of oncology research including carcinogenesis, metastasis, epidemiology, chemotherapy and viral oncology. Through fair and efficient peer review, the journal is dedicated to publishing top tier research in the field, offering authors rapid publication as well as high standards of copy-editing and production. The International Journal of Oncology is published on a monthly basis in both print and early online.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more