Skip to main content

NO-dependent regulation of lectin- and menadione-induced H2O2 production by cells from pleural effusions of lung cancer patients and by immune cells.

Buy Article:

$42.00 + tax (Refund Policy)

Molecular mechanisms of interplay between reactive oxygen (superoxide, hydroxyl radical, H2O2 etc.) and nitrogen (nitric oxide - NO, ONOO-, NO2-, NO3- etc.) forms are proposed to be of key importance for cell and tumor biology. Considering NO as a signal molecule we have studied the impact of NO release on processes of generation of H2O2 in different experimental systems including pleural effusions (PE) of lung cancer patients, human polymorphonuclear leukocytes (PMNs), and rat thymocytes. It was found that PE of lung cancer patients contain a high level of [NO2-+NO3-], i.e. 43.4 25.6 microM (n=15), and PE cells could effectively generate H2O2 in response to lectins from Viscum album (VAA), Phaseolus vulgaris (PHA), and Pisum sativum (PSA) as well as to menadione. A positive correlation between the [NO2-+NO3-] concentration and menadione-induced H2O2 generation (r=0.1964) was found, whereas the [NO2-+NO3-] concentration and lectin-induced H2O2 generation (PHA, r=-0.4099; PSA, r=-0.3949; VAA, r=-0.3225) were negatively correlated. Notably, an increase of H2O2 generation by PE cells was determined in the range of 20-35 microM [NO2-+NO3-]. When PMNs and rat thymocytes were treated with a donor of NO (sodium nitroprusside), the release of H2O2 in response to lectins or menadione was decreased in a dose-dependent manner. The end products of NO biochemistry, assayed as KNO2 and KNO3, were not able to affect significantly the H2O2 generation processes. In conclusion, the data indicate that the potential for triggered H2O2-generation of cells is modulated markedly by the presence of NO or derived reaction compounds. This relation may play an important role in the pathogenesis of PE malignancies with potential relevance for therapeutic strategies.

Document Type: Research Article

Affiliations: Department of Biophysics, Belarusian State University, 220050 Minsk, Belarus.

Publication date: 01 January 1999

More about this publication?
  • The International Journal of Oncology provides an international forum for the publication of the latest, cutting-edge research in the broad area of oncology and cancer treatment. The journal accepts original high quality works and reviews on all aspects of oncology research including carcinogenesis, metastasis, epidemiology, chemotherapy and viral oncology. Through fair and efficient peer review, the journal is dedicated to publishing top tier research in the field, offering authors rapid publication as well as high standards of copy-editing and production. The International Journal of Oncology is published on a monthly basis in both print and early online.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content