Skip to main content

LPSinduced upregulation of the TLR4 signaling pathway inhibits osteogenic differentiation of human periodontal ligament stem cells under inflammatory conditions

Buy Article:

$42.00 + tax (Refund Policy)

Tolllike receptor 4 (TLR4) is a transmembrane receptor responsible for the activation of a number of signal transduction pathways. Despite its involvement in inflammatory processes, the regulation of TLR4 signaling in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions remains to be fully elucidated. The present study aimed to clarify the regulatory mechanisms of the TLR4 signaling pathway and its role in the differentiation of hPDLSCs under inflammatory conditions. hPDLSCs from the periodontal tissues of healthy subjects and patients with periodontitis were identified by analyzing their cell surface marker molecules, and their osteogenic and adipogenic differentiation abilities. To determine the effect of TLR4 signaling on osteogenic and adipogenic differentiation under inflammatory conditions, cells were challenged with TLR4 agonist and antagonist under pluripotent differentiation conditions. Cell proliferation, apoptosis and migration were then determined using appropriate methods. The alkaline phosphatase (ALP) activity, Alizarin Red staining, Oil red O staining and relative gene and protein levels expression were also determined. The results showed that lipopolysaccharide (LPS)induced inflammation inhibited cell proliferation and migration, promoted cell apoptosis and affected the cell cycle. Under inflammatory conditions, the activation of TLR4 decreased the activity of ALP and the expression of osteogenic markers, including osteocalcin, Runtrelated transcription factor 2 and collagen I, compared with the control group, but increased the expression of adipogenesisrelated genes poly (ADPribose) polymerase γ and lipoprotein lipase. The activation of TLR4 also induced the expression of proinflammatory cytokines interleukin1β, tumor necrosis factorα, nuclear factorκBP65 and TLR4, compared with that in the control group and the TLR4 antagonist group. The findings showed that LPSinduced upregulation of the TLR4 signaling pathway inhibited osteogenic differentiation and induced adipogenesis of the hPDLSCs under inflammatory conditions. The present study provided a novel understanding of the physiopathology of periodontitis, and a novel avenue for targeted treatments based on stem cell regeneration.

Document Type: Research Article

Affiliations: Department of Cosmetic Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China

Publication date: 01 June 2019

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content