Skip to main content

Downregulation of Keap1 contributes to poor prognosis and Axitinib resistance of renal cell carcinoma via upregulation of Nrf2 expression

Buy Article:

$42.00 + tax (Refund Policy)

Kelchlike ECHassociated protein 1 (Keap1)/nuclear factor erythroid 2related factor 2 (Nrf2) signaling has a protective effect on normal cells. A number of previous studies demonstrated that Keap1/Nrf2 signaling is associated with drug resistance in numerous tumors. The aim of the present study was to investigate the roles of Keap1 in renal cell carcinoma (RCC) and its effect on sensitivity to chemotherapy. Reverse transcriptionquantitative polymerase chain reaction was used to detect the mRNA expression of Keap1 in 45 cases of RCC tumors and adjacent normal tissues. A total of five randomly selected patients with RCC, five RCC cell lines and normal renal tubular cells were examined to detect the protein and mRNA expressions of Keap1. The 5year survival rate was analyzed by KaplanMeier analysis. The cell viability was assessed by a Cell Counting kit8 assay. The cell apoptosis and reactive oxygen species (ROS) were determined by flow cytometry. The expressions of associated proteins were determined by western blot analysis. It was identified that in RCC tissues and RCC cell lines, the expression of Keap1 was downregulated, which was considered to be associated with poor prognosis. In total, 1 µM Axitinib significantly decreased cell viability, promoted ROS release and induced cell apoptosis in ACHN cells. Silencing Keap1 was able to reverse the inhibitory effect of Axitinib and enhance the protein expressions of Nrf2, NAD(P)H dehydrogenase [quinone] 1 and heme oxygenase 1. However, silencing Nrf2 increased the cell sensitivity to Axitinib. Under Axitinib condition, overexpressing Nrf2 was able to increase cell viability; however, overexpressing Keap1 resulted in an opposite effect. Keap1 serves as a tumor suppressor; its low expression was associated with poor prognosis and a decreased sensitivity of RCC cells to Axitinib. A possible mechanism underlying Axitinib resistance may involve Nrf2 overexpression.

Document Type: Research Article

Affiliations: 1: Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China 2: Medical Records Information Management Division, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China 3: Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China 4: Department of Dermatology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China

Publication date: 01 May 2019

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content