Skip to main content
padlock icon - secure page this page is secure

Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells

Buy Article:

$42.00 + tax (Refund Policy)

Cucurbitacin B (CuB), the active component of a traditional Chinese herbal medicine, Pedicellus Melo, has been shown to exhibit antitumor and anti-inflammation effects, but its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism are unknown. Tumor angiogenesis is one of the hallmarks of the development in malignant neoplasias and metastasis. Effective targeting of tumor angiogenesis is a key area of interest for cancer therapy. Here, we demonstrated that CuB significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, tubulogenesis in vitro, and blocked angiogenesis in chick embryo chorioallantoic membrane (CAM) assay in vivo. Furthermore, CuB induced HUVEC apoptosis and may induce apoptosis by triggering the mitochondrial apoptotic pathway. Finally, we found that CuB inhibiting angiogenesis was associated with inhibition of the activity of vascular endothelial growth factor receptor 2 (VEGFR2). Our investigations suggested that CuB was a potential drug candidate for angiogenesis related diseases.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Pharmacology, College of Pharmacy, Harbin Medical University, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, Heilongjiang 150086, P.R. China 2: Shuangyashan Coal General Hospital, Shuangyashan, Heilongjiang 155100, P.R. China

Publication date: January 1, 2018

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more