Skip to main content

ClC-7/Ostm1 contribute to the ability of tea polyphenols to maintain bone homeostasis in C57BL/6 mice, protecting against fluorosis

Buy Article:

$42.00 + tax (Refund Policy)

Epidemiological investigations indicate that certain ingredients in tea bricks can antagonize the adverse effects of fluoride. Tea polyphenols (TPs), the most bioactive ingredient in tea bricks, have been demonstrated to be potent bone-supporting agents. ClC7 is known to be crucial for osteoclast (OC) bone resorption. Thus, in this study, we investigated the potential protective effects of TPs against fluorosis using a mouse model and explored the underlying mechanisms with particular focus on ClC7. A total of 40, healthy, 3weekold male C57BL/6 mice were randomly divided into 4 groups (n=10/group) by weight as follows: distilled water (control group), 100 mg/l fluoridated water (F group), water containing 10 g/l TPs (TP group) and water containing 100 mg/l fluoride and 10 g/l TPs (F + TP group). After 15 weeks, and after the mice were sacrificed, the long bones were removed and bone marrow-derived macrophages were cultured ex vivo in order to perform several experiments. OCs were identified and counted by tartrateresistant acid phosphatase (TRAP) staining. The consumption of fluoride resulted in severe fluorosis and in an impaired OC function [impaired bone resorption, and a low mRNA expression of nuclear factor of activated T-cells 1 (NFATc1), ATPase H+ transporting V0 subunit D2 (ATP6v0d2) and osteopetrosisassociated transmembrane protein 1 (Ostm1)]. In the F + TP group, fluorosis was attenuated and OC function was restored, but not the high bone fluoride content. Compared with the F group, mature OCs in the F + TP group expressed higher mRNA levels of ClC7 and Ostm1; the transportation and retaining of Cl was improved, as shown by the fluorescence intensity experiment. On the whole, our findings indicate that TPs mitigate fluorosis in C57BL/6 mice by regulating OC bone resorption. Fluoride inhibits OC resorption by inhibiting ClC7 and Ostm1, whereas TPs attenuate this inhibitory effect of fluoride.

Document Type: Research Article

Affiliations: Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China

Publication date: 01 January 2017

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content