Skip to main content
padlock icon - secure page this page is secure

Pathway deviation-based biomarker and multi-effect target identification in asbestos-related squamous cell carcinoma of the lung

Buy Article:

$42.00 + tax (Refund Policy)

Asbestos-related lung carcinoma is one of the most devastating occupational cancers, and effective techniques for early diagnosis are still lacking. In the present study, a systematic approach was applied to detect a potential biomarker for asbestos-related lung cancer (ARLC); in particular asbestos-related squamous cell carcinoma (ARLC-SCC). Microarray data (GSE23822) were retrieved from the Gene Expression Omnibus database, including 26 ARLC-SCCs and 30 non-asbestos-related squamous cell lung carcinomas (NARLC-SCCs). Differentially expressed genes (DEGs) were identified by the limma package, and then a protein-protein interaction (PPI) network was constructed according to the BioGRID and HPRD databases. A novel scoring approach integrating an expression deviation score and network degree of the gene was then proposed to weight the DEGs. Subsequently, the important genes were uploaded to DAVID for pathway enrichment analysis. Pathway correlation analysis was carried out using Spearman's rank correlation coefficient of the pathscore. In total, 1,333 DEGs, 391 upregulated and 942 downregulated, were obtained between the ARLC-SCCs and NARLC-SCCs. A total of 524 important genes for ARLC-SCC were significantly enriched in 22 KEGG pathways. Correlation analysis of these pathways showed that the pathway of SNARE interactions in vesicular transport was significantly correlated with 12 other pathways. Additionally, obvious correlations were found between multiple pathways by sharing cross-talk genes (EGFR, PRKX, PDGFB, PIK3R3, SLK, IGF1, CDC42 and PRKCA). On the whole, our data demonstrate that 8 cross-talk genes were found to bridge multiple ARLC-SCC-specific pathways, which may be used as candidate biomarkers and potential multi-effect targets. As these genes are involved in multiple pathways, it is possible that drugs targeting these genes may thus be able to influence multiple pathways simultaneously.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China

Publication date: January 1, 2017

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more