Skip to main content

SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro

Buy Article:

$42.00 + tax (Refund Policy)

Silent information regulator 2-related enzyme 1 (SIRT1), a protein deacetylase, is known to strongly protect cells against oxidative stress-induced injury. The nuclear factor E2-related factor 2 (NRF2)-antioxidant response element (ARE) antioxidant pathway plays important regulatory roles in the antioxidant therapy of paraquat (PQ) poisoning. In the present study, we investigated whether the SIRT1/NRF2/ARE signaling pathway plays an important role in lung injury induced by PQ. For this purpose, mouse type II alveolar epithelial cells (AECsII) were exposed to various concentrations of PQ. The overexpression or silencing of SIRT1 was induced by transfecting the cells with a SIRT1 overexpression vector or shRNA targeting SIRT1, respectively. The protein expression levels of SIRT1 and NRF2 were measured by western blot analysis. The superoxide dismutase (SOD) and catalase (CAT) activities, as well as the glutathione (GSH) and malondialdehyde (MDA) levels were measured using respective kits. Heme oxygenase-1 (HO-1) activity was also determined by ELISA. In addition, cell apoptosis was determined by flow cytometry. The protein stability of NRF2 was analyzed using cycloheximide and its acetylation in the cells was also determined. The following findings were obtained: i) SIRT1 overexpression markedly increased NRF2 protein expression; ii) SIRT1 promoted the transcriptional activity of NRF2 and upregulated the expression of the NRF2 downstream genes, SOD, CAT, GSH and HO-1, thus inhibiting the apoptosis of AECsII; iii) the inhibition of SIRT1 activity further induced the production of malondialdehyde (MDA), which resulted in increased oxidative damage; iv) SIRT1 promoted the stability of NRF2 by regulating the deacetylation and activation of the NRF2/ARE antioxidant pathway. The findings of this study demonstrate that the protective effects of SIRT1 are associated with the activation of the NRF2/ARE antioxidant pathway in lung injury induced by PQ poisoning.

Document Type: Research Article

Affiliations: Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China

Publication date: 01 January 2016

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content