Skip to main content

MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells

Buy Article:

$42.00 + tax (Refund Policy)

microRNAs (miRNAs or miRS) have been demonstrated to be essential for neural development. miR-125b-2, presented on human chromosome 21, is overexpressed in neurons of individuals with Down syndrome (DS) with cognitive impairments. It has been reported that miR-125b-2 promotes specific types of neuronal differentiation; however, the function of miR-125b-2 in the early development of the embryo has remained to be fully elucidated. In the present study, a mouse embryonic stem cell (mESC) line was stably transfected with a miR-125b-2 lentiviral expression vector and found that miR-125b-2 overexpression did not affect the self-renewal or proliferation of mESCs. However, miR-125b-2 overexpression inhibited the differentiation of mESCs into endoderm and ectoderm. Finally, miR-125b-2 overexpression was found to impair all-trans-retinoic acid-induced neuron development in embryoid bodies. The findings of the present study implied that miR-125b-2 overexpression suppressed the differentiation of mESCs into neurons, which highlights that miR125b-2 is important in the regulation of ESC differentiation. The present study provided a basis for the further identification of novel targets of miR-125b-2, which may contribute to an enhanced understanding of the molecular mechanisms of ESC differentiation.

Document Type: Research Article

Affiliations: Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China

Publication date: 01 January 2015

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content