Skip to main content

FERM family proteins and their importance in cellular movements and wound healing (Review)

Buy Article:

$42.00 + tax (Refund Policy)

Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.

Document Type: Research Article

Affiliations: Departments of Surgery and Wound Healing, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XW, UK

Publication date: 01 January 2014

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content