Skip to main content
padlock icon - secure page this page is secure

Proteomic and bioinformatic analysis of differentially expressed proteins in denervated skeletal muscle

Buy Article:

$42.00 + tax (Refund Policy)

The aim of this study was to improve our understanding and the current treatment of denervation-induced skeletal muscle atrophy. We used isobaric tags for relative and absolute quantification (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) to identify the differentially expressed proteins in the tibialis anterior (TA) muscle of rats at 1 and 4 weeks following sciatic nerve transection. A total of 110 proteins was differentially expressed and was further classified using terms from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to unravel their molecular functions. Among the differentially expressed metabolic enzymes involved in glycolysis, Krebs cycle and oxidative phosphorylation, α- and β-enolase displayed an increased and decreased expression, respectively, which was further validated by western blot analysis and immunohistochemistry. These findings suggest that the enolase isozymic switch during denervation-induced muscle atrophy is the reverse of that occurring during muscle maturation. Notably, proteinprotein interaction analysis using the STRING database indicated that the protein expression of tumor necrosis factor receptor-associated factor-6 (TRAF6), muscle ring-finger protein 1 (MuRF1) and muscle atrophy F-box (MAFBx) was also upregulated during denervationinduced skeletal muscle atrophy, which was confirmed by western blot analysis. TRAF6 knockdown experiments in L6 myotubes suggested that the decreased expression of TRAF6 attenuated glucocorticoidinduced myotube atrophy. Therefore, we hypothesized that the upregulation of TRAF6 may be involved in the development of denervationinduced muscle atrophy, at least in part, by regulating the expression of MAFBx and MuRF1 proteins. The data from the present study provide valuable insight into the molecular mechanisms regulating denervation-induced muscle atrophy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China 2: Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, P.R. China

Publication date: June 1, 2014

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more