Skip to main content
padlock icon - secure page this page is secure

Molecular cloning, modeling and differential expression of a gene encoding a silent information regulator-like protein from Sporothrix schenckii

Buy Article:

$42.00 + tax (Refund Policy)

Sporothrix schenckii (S. schenckii) is a dimorphic fungus that produces lymphocutaneous lesions. The signature characteristic of S. schenckii is a temperature-induced phase transition. Silent information regulator (Sir) has been proven to be involved in phenotypic switching in Saccharomyces cerevisiae (S. cerevisiae) and Candida albicans (C. albicans) by organizing chromatin structure. In this study, we isolated and characterized a Sir homologue gene, designated as SsSir2, from the yeast form of S. schenckii. The full-length SsSir2 cDNA sequence is 1753 bp in size and contains an open reading frame of 1329 bp encoding 442 amino acids. The predicted molecular mass of SsSir2 is 48.1 kDa with an estimated theoretical isoelectric point of 4.6. The SsSir2 kinase domain shows a 78% identity with that of Hst2, a Sir2 Ib gene from S. cerevisiae. Three exons and two introns were identified within the 1472bp SsSir2 genomic DNA sequence of S. schenckii. A three-dimensional model of SsSir2 was constructed using a homology modeling method, and its reliability was evaluated. The active site of SsSir2 was identified by docking simulation, which indicated that several important residues, such as Asn127 and Asp129, play an important role in the histone deacetylase activity of Sir2 family proteins. The differential expression of the SsSir2 in two stages was demonstrated by real-time RT-PCR. The expression of SsSir2 was higher in the yeast stage compared with that in the mycelial one, which indicated that SsSir2 may be involved in the phenotypic switching and morphogenesis of the yeast phase in S. schenckii.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Dermatology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China 2: Department of Dermatology, Hong Kong University - Shenzhen Hospital, Shenzhen, Guangdong, P.R. China 3: Key Laboratory of Animal Resource and Epidemic Disease Prevention, Life Science School of Liaoning University, Shenyang, Liaoning, P.R. China

Publication date: June 1, 2014

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more