Skip to main content
padlock icon - secure page this page is secure

The pathophysiological mechanisms underlying mucus hypersecretion induced by cold temperatures in cigarette smoke-exposed rats

Buy Article:

$42.00 + tax (Refund Policy)

In a recent study, we demonstrated that transient receptor potential melastatinĀ 8 (TRPM8), a calcium-permeable cation channel that is activated by cold temperatures, is localized in the bronchial epithelium and is upregulated in subjects with chronic obstructive pulmonary disease, which causes them to be more sensitive to cold air. In the present study, we found that exposure to cold temperatures induced ciliary ultrastructural anomalies and mucus accumulation on the epithelial surface. Male Sprague-Dawley rats were exposed to cold temperatures to determine the effects of cold air on ultrastructural changes in cilia and the airway epithelial surface. The rats were also exposed to cigarette smoke and/or cold temperatures to determine the effects of smoke and cold air on TRPM8 expression and the role of cold air in cigarette smoke-induced mucus hypersecretion. Following real-time RT-PCR and western blot analysis, we observed a high expression of TRPM8 mRNA and protein in the bronchial tissue following cigarette smoke inhalation. As shown by ELISA, concurrent cold air enhanced the levels of mucinĀ 5AC (MUC5AC) protein, as well as those of inflammatory factors [tumor necrosis factor (TNF)-α and interleukin (IL)-8] that were induced by cigarette smoke inhalation to a greater extent than stimulation with separate stimuli (cold air and cigarette smoke separately). The results suggest that cold air stimuli are responsible for the ultrastructural abnormalities of bronchial cilia, which contribute to abnormal mucus clearance. In addition, cold air synergistically amplifies cigarette smoke-induced mucus hypersecretion and the production of inflammatory factors through the elevated expression of the TRPM8 channel that is initiated by cigarette smoke inhalation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China 2: Department of Neurosurgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China 3: Department of Histology, Amur State Medical Academy, Blagoveshchensk 675000, Russia 4: Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk 675000, Russia

Publication date: January 1, 2014

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more