Skip to main content

Oridonin exerts protective effects against hydrogen peroxideinduced damage by altering microRNA expression profiles in human dermal fibroblasts

Buy Article:

$42.00 + tax (Refund Policy)

The aim of the present study was to evaluate the protective effects of oridonin on hydrogen peroxide-induced cytotoxicity in normal human dermal fibroblasts (NHDFs) using microRNA (miRNA) expression profile analysis. Oridonin was not cytotoxic at low doses (≤5 µM) in the NHDFs, and pre-treatment of the cells with oridonin significantly reduced hydrogen dioxide (H2O2)-mediated cytotoxicity and cell death. Whereas oridonin showed no free radical scavenging activity in in vitro and in vivo antioxidant assays, treatment of the NHDFs with oridonin was associated with intracellular scavenging of reactive oxygen species. High-density miRNA microarray analysis revealed alterations in the expression profiles of specific miRNAs (5 upregulated and 22 downregulated) following treatment with oridonin in the H2O2-treated NHDFs. Moreover, the use of a miRNA target-gene prediction tool and Gene Ontology analysis demonstrated that these miRNAs are functionally related to the inhibition of apoptosis and cell growth. These data provide valuable insight into the cellular responses to oridonin in H2O2-induced damage in NHDFs.

Document Type: Research Article

Affiliations: 1: Molecular-Targeted Drug Research Center, Konkuk University, Seoul 143-701, Republic of Korea 2: Department of Dermatology, Konkuk University School of Medicine, Seoul 143-701, Republic of Korea 3: Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 143-701, Republic of Korea

Publication date: 01 January 2013

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content