Skip to main content
padlock icon - secure page this page is secure

Suppression of RND3 activity by AES downregulation promotes cancer cell proliferation and invasion

Buy Article:

$42.00 + tax (Refund Policy)

Amino-terminal enhancer of split (AES) is a member of the Groucho/TLE family. Although it has no DNA-binding site, AES can regulate transcriptional activity by interacting with transcriptional factors. Emerging evidence indicates that AES may play an important role in tumor metastasis, but the molecular mechanism is still poorly understood. In this study, we found that knockdown of AES by RNA interference (RNAi) downregulated RND3 expression at the mRNA and protein levels in MDA-MB-231 and HepG2, two cancer cell lines. Furthermore, luciferase assays showed that overexpression of AES significantly enhanced RND3 promoter activity. Moreover, inhibition of AES both in MDA-MB-231 and HepG2 cells by RNAi significantly promoted cell proliferation, cell cycle progression and invasion, consistent with the effects of RNAi-mediated RND3 knockdown in these cells. For the first time, data are presented showing that alteration of the malignant behavior of cancer cells by AES is related to RND3 regulation, and these findings also provide new insights into the mechanism of AES action in regulating tumor malignancy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Laboratory of Signal Transduction and Molecular Targeted Therapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China 2: Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, P.R. China

Publication date: January 1, 2013

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more