Skip to main content

Alternative splicing of apoptosis-related genes in imatinib-treated K562 cells identified by exon array analysis

Buy Article:

$42.00 + tax (Refund Policy)

Imatinib is the therapeutic standard for newly diagnosed patients with chronic myeloid leukemia (CML). In these patients, imatinib has been shown to induce an apoptotic response specifically in cells expressing the oncogenic fusion protein BCR-ABL. Previous studies in our lab revealed that imatinib-induced apoptosis in K562 cells involves a shift in production of Bcl-x splice isoforms towards the pro-apoptotic Bcl-xs splice variant. Here, we report the findings from our subsequent study to identify other apoptosis-related genes that are differentially spliced in response to imatinib treatment. Gene expression profiling of imatinib-treated K562 cells was performed by the Affymetrix GeneChip® Human Exon 1.0 ST array, and differences in exon-level expression and alternative splicing were analyzed using the easyExon software. Detailed analysis by reverse transcription-PCR (RT-PCR) and sequencing of key genes confirmed the experimental results of the exon array. Our results suggest that imatinib treatment of K562 cells causes a transcriptional shift towards alternative splicing in a large number of apoptotic genes. The present study provides insight into the molecular character of apoptotic leukemia cells and may help to improve the mechanism of imatinib therapy in patients with CML.

Document Type: Research Article

Affiliations: 1: Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China 2: Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China

Publication date: 01 January 2012

More about this publication?
  • The International Journal of Molecular Medicine is a monthly, peer-reviewed journal devoted to the publication of high quality studies related to the molecular mechanisms of human disease. The journal welcomes research on all aspects of molecular and clinical research, ranging from biochemistry to immunology, pathology, genetics, human genomics, microbiology, molecular pathogenesis, molecular cardiology, molecular surgery and molecular psychology.

    The International Journal of Molecular Medicine aims to provide an insight for researchers within the community in regard to developing molecular tools and identifying molecular targets for the diagnosis and treatment of a diverse number of human diseases.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Information for Advertisers
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content